8,139 research outputs found

    Some notes on the Kruskal - Szekeres completion

    Full text link
    The Kruskal - Szekeres (KS) completion of the Schwarzschild spacetime is open to Synge's methodological criticism that the KS procedure generates "good" coordinates from "bad". This is addressed here in two ways: First I generate the KS coordinates from Israel coordinates, which are also "good", and then I generate the KS coordinates directly from a streamlined integration of the Einstein equations.Comment: One typo correcte

    Using Cross-Linked SU-8 to Flip-Chip Bond, Assemble, and Package MEMS Devices

    Get PDF
    This paper investigates using an SU-8 photoresist as an adhesive material for flip-chip bonding, assembling, and packaging microelectromechanical systems devices. An important factor, when using SU-8 as an adhesive material is to control ultraviolet (UV) exposure during fabrication to maximize bond strength due to material cross linking. This approach is much improved over previous efforts where SU-8 bake times and temperatures where changed to alter material cross-linking. In this paper, bake times and temperatures were maintained constant and total UV exposure energy was varied. Once fabricated, bond strength was systematically tested to determine the tensile loads needed to separate bonded structures. The resulting separation force was shown to increase with UV exposure and ranged from 0.25 (5-s exposure) to 1.25 N (15-s exposure). The separation test data were then analyzed to determine the statistical significance of varying UV exposure time and its effect on SU-8 cross-linking and bond strength. The data show that total UV exposure dose is directly correlated with the bond strength of SU-8 bonded structures. By varying only UV dose, the separation force data exhibited a statistically significant dependence on SU-8 cross linking with a 5% probability of error. Further, SU-8 etch resiliency increased by approximately 40%-60% as cross linking was increased with UV exposures ranging from 5 to 15 s

    Gravitational Collapse of Dust with a Cosmological Constant

    Get PDF
    The recent analysis of Markovic and Shapiro on the effect of a cosmological constant on the evolution of a spherically symmetric homogeneous dust ball is extended to include the inhomogeneous and degenerate cases. The histories are shown by way of effective potential and Penrose-Carter diagrams.Comment: 2 pages, 2 figures (png), revtex. To appear in Phys. Rev.

    Investigations of the effect of nonmagnetic Ca substitution for magnetic Dy on spin-freezing in Dy2Ti2O7

    Get PDF
    Physical properties of partially Ca substituted hole-doped Dy2Ti2O7 have been investigated by ac magnetic susceptibility \chi_ac(T), dc magnetic susceptibility \chi(T), isothermal magnetization M(H) and heat capacity C_p(T) measurements on Dy1.8Ca0.2Ti2O7. The spin-ice system Dy2Ti2O7 exhibits a spin-glass type freezing behavior near 16 K. Our frequency dependent \chi_ac(T) data of Dy1.8Ca0.2Ti2O7 show that the spin-freezing behavior is significantly influenced by Ca substitution. The effect of partial nonmagnetic Ca2+ substitution for magnetic Dy3+ is similar to the previous study on nonmagnetic isovalent Y3+ substituted Dy2-xYxTi2O7 (for low levels of dilution), however the suppression of spin-freezing behavior is substantially stronger for Ca than Y. The Cole-Cole plot analysis reveals semicircular character and a single relaxation mode in Dy1.8Ca0.2Ti2O7 as for Dy2Ti2O7. No noticeable change in the insulating behavior of Dy2Ti2O7 results from the holes produced by 10% Ca2+ substitution for Dy3+ ions.Comment: 9 pages, 7 figures, 1 tabl

    Integrating Nanosphere Lithography in Device Fabrication

    Get PDF
    This paper discusses the integration of nanosphere lithography (NSL) with other fabrication techniques, allowing for nano-scaled features to be realized within larger microelectromechanical system (MEMS) based devices. Nanosphere self-patterning methods have been researched for over three decades, but typically not for use as a lithography process. Only recently has progress been made towards integrating many of the best practices from these publications and determining a process that yields large areas of coverage, with repeatability and enabled a process for precise placement of nanospheres relative to other features. Discussed are two of the more common self-patterning methods used in NSL (i.e. spin-coating and dip coating) as well as a more recently conceived variation of dip coating. Recent work has suggested the repeatability of any method depends on a number of variables, so to better understand how these variables affect the process a series of test vessels were developed and fabricated. Commercially available 3-D printing technology was used to incrementally alter the test vessels allowing for each variable to be investigated individually. With these deposition vessels, NSL can now be used in conjunction with other fabrication steps to integrate features otherwise unattainable through current methods, within the overall fabrication process of larger MEMS devices. Patterned regions in 1800 series photoresist with a thickness of ~700nm are used to capture regions of self-assembled nanospheres. These regions are roughly 2-5 microns in width, and are able to control the placement of 500nm polystyrene spheres by controlling where monolayer self-assembly occurs. The resulting combination of photoresist and nanospheres can then be used with traditional deposition or etch methods to utilize these fine scale features in the overall design

    PVDF-TrFE Electroactive Polymer Mechanical-to-Electrical Energy Harvesting Experimental Bimorph Structure

    Get PDF
    Research of electrostrictive polymers has generated new opportunities for harvesting energy from the surrounding environment and converting it into usable electrical energy. Electroactive polymer (EAP) research is one of the new opportunities for harvesting energy from the natural environment and converting it into usable electrical energy. Piezoelectric ceramic based energy harvesting devices tend to be unsuitable for low-frequency mechanical excitations such as human movement. Organic polymers are typically softer and more flexible therefore translated electrical energy output is considerably higher under the same mechanical force. In addition, cantilever geometry is one of the most used structures in piezoelectric energy harvesters, especially for mechanical energy harvesting from vibrations. In order to further lower the resonance frequency of the cantilever microstructure, a proof mass can be attached to the free end of the cantilever. Mechanical analysis of an experimental bimorph structure was provided and led to key design rules for post-processing steps to control the performance of the energy harvester. In this work, methods of materials processing and the mechanical to electrical conversion of vibrational energy into usable energy were investigated. Materials such as polyvinyledenedifluoridetetra-fluoroethylene P(VDF-TrFE) copolymer films (1um thick or less) were evaluated and presented a large relative permittivity and greater piezoelectric β-phase without stretching. Further investigations will be used to identify suitable micro-electromechanical systems (MEMs) structures given specific types of low-frequency mechanical excitations (10-100Hz)

    Generating Static Fluid Spheres by Conformal Transformations

    Full text link
    We generate an explicit four-fold infinity of physically acceptable exact perfect fluid solutions of Einstein's equations by way of conformal transformations of physically unacceptable solutions (one way to view the use of isotropic coordinates). Special cases include the Schwarzschild interior solution and the Einstein static universe. The process we consider involves solving two equations of the Riccati type coupled by a single generating function rather than a specification of one of the two metric functions.Comment: 4 pages revtex4, two figures, Final form to appear in Phys. Rev.

    Standardized Testing of Non-Standard Photovoltaic Pavement Surfaces

    Get PDF
    Emerging photovoltaic products have expanded the applications for the technologies into markets previously unconsidered for what was thought to be a delicate electronic product. One company leading this effort, Solar Roadways, Incorporated, is producing pavement replacing photovoltaic systems and proposing their use in everything from sidewalks to runways. Current pavement testing methods cannot be applied to these non-homogenous structures to identify if they can support the required loads. However, the standards called out specifically for pavements may be able to be translated to these products and their non-homogenous structures and non-standard materials to identify if they are able to perform similarly to standard pavements. This research modified existing test standards in several ways: rigid pavements standards for advanced loading, structural adhesive standards for shear loading, structure specific standards for moisture conditioning, and application specific standards for freeze/thaw cycling. These modifications are due to the fact that the materials in these emerging products do not have established tests to evaluate their performance in non-traditional applications. The future of electronics is dependent on product unique applications. This, in turn, requires finding methods of testing them based on application, extrapolation, or correlation to traditional material testing which enables faster product development and subsequent roll out
    corecore